What does the excessive use of 50% mean?

Sanne Willems - Reading Group, 2021-09-14

50% "blips"

Figure 1: Response distributions for judged probabilities of (A) surviving in the next 10 years and (B) dying in the next 10 years.
Why a problem?

50 blips give an artificial increase (/decrease) in aggregated judgments for events that typically have smaller (/larger) probabilities.

-> as suggested by Ruben during my previous presentation
What do they mean?

Some possibilities mentioned by Fischhoff & Bruine de Bruin (1999):

• Insensitivity to probabilities in the middle range, i.e. participants use 50% for anything in the 40-60% range
 -> probably not, lump remains if you spread the responses over 40-60% interval

• Real differences in beliefs; it is a coincidence?

• Other meaning -> “I really don’t know”
 • Laplacian = placing equal probability on all hypothesis (2 outcomes here)
 • Epistemic uncertainty = not knowing what probabilities to use to express one’s state of belief
Does the answer mode have an influence?
Fischhoff & Bruine de Bruin (1999) – study 2

Estimative probability:
• Open-ended question: %
• Linear scale: 0 –100%
• Log-linear scale: 0-100% + log scale extension between 0-1%
Does the answer mode have an influence?
Fischhoff & Bruine de Bruin (1999) – study 2

Results:

Open-ended

Linear 0-100 %

Log-linear 0-1% and −100%
50% = Absolutely no idea?
Fischhoff & Bruine de Bruin (1999) – study 1

2 answer modes:
• Open-ended question: %
• Linear scale: 0 –100%

Additional option: check box “absolutely no idea”

Option was given to about half of the participants in each of the answer modes conditions -> four groups
50% = Absolutely no idea?
Fischhoff & Bruine de Bruin (1999) – study 1

Results:

• 27.5% of participants used the “absolutely no idea” option
• “absolutely no idea” option was used almost twice as frequently when no scale was presented (13.9% vs. 7.9%, but difference not significant)
• Responses of 50% were less common with the “absolutely no idea” option (6.8% vs. 1.8%)
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

New study; ask participants to explain their probabilities

1. Fill in the blank:
 I have a% probability of living/dying in the next 10 years.

2. Explain your probability; good estimate vs. don’t know:
 • I think that x% is a relatively good estimate, but I’m not quite sure it’s right
 • I think that x% is a relatively good estimate, but I don’t like to think about it too much.
 • I actually have no idea about the chances
 • No one can know the chances

3. Other measures (numeracy, education, age, self-reported serious health issues, number of visits to medical specialist)
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

Main research question:
Is 50% more likely than other probabilities to be used as an expression of not knowing what number to use?
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

Results:

• Peaks in both framings
 (17.5% v. 16.4%, $\chi(1) = 0.25$, $p = 0.62$)

• People who used 50%
 • had lower levels of education:
 10.3% vs 19.8% having a college degree
 ($\chi(1) = 13.21$, $p < 0.001$)
 • Answered a lower proportion of the numeracy
 questions correctly:
 0.63 [0.23] vs. 0.67 [0.25]
 ($t(1018) = 2.15$, $p = 0.03$)
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

Results:

• 50% was more likely than other probabilities to be explained as “don’t know”

• Also after controlling for other characteristics

Table 1: Percent of Respondents Using Different Explanations for Their Probability Judgments, in Overall Sample, and by Probability Judgment, Education and Numeracy

<table>
<thead>
<tr>
<th></th>
<th>Overall sample</th>
<th>Probability judgment</th>
<th>Education</th>
<th>Numeracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Not Quite Sure</td>
<td>Don’t Like to Think about It</td>
<td>No Idea</td>
</tr>
<tr>
<td>Overall sample</td>
<td>1020</td>
<td>16.5</td>
<td>20.2</td>
<td>11.6</td>
</tr>
<tr>
<td>Probability judgment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>173</td>
<td>6.4</td>
<td>12.7</td>
<td>13.9</td>
</tr>
<tr>
<td>Other</td>
<td>847</td>
<td>18.5</td>
<td>21.7</td>
<td>11.1</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No college degree</td>
<td>676</td>
<td>11.8</td>
<td>19.5</td>
<td>10.1</td>
</tr>
<tr>
<td>College degree</td>
<td>292</td>
<td>27.7</td>
<td>22.3</td>
<td>14.0</td>
</tr>
<tr>
<td>Numeracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low numeracy</td>
<td>585</td>
<td>11.3</td>
<td>19.0</td>
<td>12.1</td>
</tr>
<tr>
<td>High numeracy</td>
<td>435</td>
<td>23.4</td>
<td>21.8</td>
<td>10.8</td>
</tr>
</tbody>
</table>

*aA total of 968 respondents reported whether or not they had a college education.
*bNumeracy groups were split by their median ($= .73$). Mean numeracy differed significantly across the 4 respective explanations ($t = .75$ $[.22]$ v. $.69$ $[.24]$ v. $.66$ $[.23]$ v. $.63$ $[.25]$), $F(3, 1016) = 9.95$, $P < 0.001$, as well as their “good estimate” ($t = .71$ $[.23]$) v. “don’t know” categories ($t = .64$ $[.25]$), $t(1016) = 4.73$, $P < 0.001$.
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

Results:
• Respondents with lower education and numeracy were relatively more likely to use the “don’t” know option.
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

Conclusions:
• 50% is more likely than other probabilities to be explained as not knowing what number to use
• especially among individuals with low education and numeracy

Limitation?
• Only looked at judged probabilities of living or dying. Will “don’t know” explanations be less common with probabilities about events that evoke less uncertainty?
Further investigating “no idea” option
Bruine de Bruin & Carman (2012)

Limitations

• Only looked at judged probabilities of living or dying. Will “don’t know” explanations be less common with probabilities about events that evoke less uncertainty?

• The follow-up question does not specify *how much* uncertainty the respondents experienced.

Advice: the follow-up question can be used to assess how well a person understands a risk.
Did we find the 50% blips too?

Ruben
Sanne, Casper, Ionica

<table>
<thead>
<tr>
<th>Risk Information</th>
<th>Less Numerate</th>
<th>Highly Numerate</th>
</tr>
</thead>
<tbody>
<tr>
<td>No comparative risk information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personalized risk above average (10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personalized risk below average (40%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>