When (ish) is my bus?

user-centered visualizations of uncertainty in everyday, mobile predictive systems

Sanne Willems, reading group Sept 12th
How to convey uncertainty of transit predictions?

• **current:**
 • point estimates
 • uncertainty ignored
How to convey uncertainty of transit predictions?

• current:
 • point estimates
 • uncertainty ignored

• displaying uncertainty may:
 • improve trust
 • Point estimates give false precision
 • Frustration when errors are made
 • Allow users to apply situation-dependent risk tolerance
Design requirements?

User goals:
- When to leave
- Wait time
- Time to next bus
- Schedule risk
- Schedule opportunity
- Schedule frequency
Design requirements?

User goals:
• When to leave
• Wait time
• Time to next bus
• Schedule risk
• Schedule opportunity
• Schedule frequency

Design Requirements:
• Point estimate of time to arrival
• Probabilistic estimate of time to arrival
• Probabilistic estimate of arrival status
• Glanceability
• Small -> small screen
First design – two layouts

Design Requirements:

- Point estimate of time to arrival
- Probabilistic estimate of time to arrival
- Probabilistic estimate of arrival status
- Glanceability
- Small -> small screen
First design – two layouts

Design Requirements:

- Point estimate of time to arrival
- Probabilistic estimate of time to arrival
- Probabilistic estimate of arrival status
- Glanceability
- Small -> small screen

But focus of article is on design of densities, not bus/route timeline.
First design – point estimates
More designs – how to show density?

Aim: discrete outcome visualizations of continuous variables

(as in natural frequencies, icon arrays, hypothetical outcome plots)

<table>
<thead>
<tr>
<th></th>
<th>Density</th>
<th>Stripeplot</th>
<th>Density+ Stripeplot</th>
<th>Dotplot(20)</th>
<th>Dotplot(50)</th>
<th>Dotplot(100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>shows discrete, countable events</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>fast counting in tails</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>fast counting in body</td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>directly estimate density</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>directly estimate quantiles</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>tight densities drawn consistently</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>project to axis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>easily assess range (min/max)</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>easily assess mode</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Figure 4. Comparison of various encodings of probability we considered for use in our designs.
More designs – how to show density?

Aim: discrete outcome visualizations of continuous variables

(As in natural frequencies, icon arrays, hypothetical outcome plots)

Figure 4. Comparison of various encodings of probability we considered for use in our designs.
Final choices to compare:

<table>
<thead>
<tr>
<th></th>
<th>Bus Timeline</th>
<th>Route Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotplot (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotplot (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stripeplot (50)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. The four types of visualizations selected for evaluation.
Survey questions, examples:

4 scenarios:

You are waiting for a bus, and must decide if you have enough time to get coffee before the bus arrives.

2 questions per scenario, e.g.:
What is the chance that the bus will arrive in 10 minutes or earlier?
Response: Visual Analog Scale, with bubble (20/100, 10/50, 4/20)

How confident are you?
Measures

Error: bias and variance

Authors:

\textit{as long as bias is low, variance is more important}

\textit{\rightarrow low variance allows people to adjust their behaviour to less bias}

- Estimation error = \text{logit}(\text{estimated } p) - \text{logit}(\text{true } p)
Results: bias (and variance)

We take the log odds ratio of estimated p versus true p: the narrower this distribution is, the more precise respondents were at estimating probabilities, and the lower the dispersion will be in our model of responses.

Respondents' estimates in dotplot-20 are the most precise of all conditions: note the narrow, peaked distribution.

Dotplot-100 and density perform similarly, exhibiting slightly less precise estimates than dotplot-20.

Respondents' estimates in stripeplot are the least precise of all conditions: note the wide, diffuse distribution.
Results: variance

Figure 7. Differences in variance for each visualization type.
Confidence

• Dotplot-20:
 • Most confident
 • Negative correlation: confidence and absolute estimation error

• Next: dotplot-100 (significant difference with dotplot-20)
Conclusions and discussion

- Discrete-outcome visualization of uncertainty can improve probability estimation.
- Fewer dots seems better -> discrete plots with too many outcomes converge to continuous encodings?

Recommendation: use discrete outcome plots with few enough outcomes to take advantage of subitizing (=quickly recognizing counts).
User opinions:

Communicating uncertainty:
- Positive:
 - helps making better decisions
 - alleviates anxiety when app’s information does not match their knowledge
- Negative:
 - More responsibility - I cannot blame the app

Precision vs glanceability
- Some like the design, others think it overwhelming
- Too much to comprehend while walking to bus station?
- Maybe practice helps?
Points for discussion

• Is dotplot-20 easier to answer correctly due to “bubble” with slider?

• What if you need to make an estimate for < 12 minutes?
Points for discussion

• Is dotplot-20 easier to answer correctly due to “bubble” with slider?

• What if you need to make an estimate for < 12 minutes?

Questions?

Figure 5. The four types of visualization